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Field Analysis of Shielded Uniaxial-Dielectric Rod Resonators
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Abstract —The rigorous field analysis by the mode
matching method is presented for two dielectric rod
resonators including such uniaxial-dielectrics as sapphire,
which is placed between two parallel conducting plates
and in a conducting cavity. The resonant frequencies of
the some lowest modes are calculated. The validity is
confirmed by experiment.

1. INTRODUCTION

Recently, sapphire dielectric resonators shielded by
high Tc superconducting films have attracted special interest
since they realize very high Q characteristic of over 2X 10¢
below 90 K[1]. As is well known, single crystalline sapphires
have relative permittivity perpendicular to the c-axis €, = 9.4
and one parallel to the c-axis €, = 11.6 because of their
dielectric uniaxial anisotropy. Therefore, designing such
resonators, we need to take account of the influence of
anisotropic property on the resonant modes.

In this paper the rigorous field analysis by the mode
matching method is described for shielded uniaxial-dielectric
rod resonators of two types; parallel-plates and cavity-open
types. The characteristic equations for these resonators are
derived, the resonant frequencies of the some lowest modes
are calculated, and mode charts are presented to design these
resonators. The validity of theory is confirmed by
experiment.

II. ANALYSIS

Fig. 1 shows two structures to be analyzed. One is
parallel-plates type resonator shown in Fig. 1(a), where a
dielectric rod is placed between two parallel, infinitely large
conducting plates, and the other is cavity-open type resonator
shown in Fig. 1(b), where a dielectric rod is placed
symmetrically in a cylindrical conducting cavity.

In the field analysis discussed below we use a
cylindrical coordinate system 1, 0, z. The dielectric rod is
assumed to be lossless homogeneous uniaxial anisotropic
with the c-axis parallel to the z axis. Defining €, and €, as the
relative permittivity perpendicular and parallel to the c-axis,
respectively, the relative permittivity tensor [g,] is given by
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Fig. 1. Structures of shielded dielectric rod resonators.
(a) Parallel-plates type (b) Cavity-open type
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The relative permeability of the dielectric is assumed to be
W, = 1 and the conductor is also assumed to be lossless.

In a source-free condition and a time-harmonic factor
ejot Maxwell's equations can be written as follows:
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where E and H are the electric and magnetic fields, €gand yg
are the permittivity and permeability of vacuum, respectively.
Equation(4) can be rewritten as follows:
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Thus, we obtain

V'E=(1 &) oz

Q)
Since the resonant modes in Fig. 1 are generally known

to be hybrid, we then derive the wave equations for E, and
H,.
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Taking the rotation of (2) and using (3), we obtain

VX (VXE)- k2 [e]E=0 ®)
where ko2 = 0?2 € [1g. Using the vector formula
(V-VYE=V(V -E)-VX(VXE) )
and (7), we obtain
[ JE, 2 -
(V-V)E - ( 's[)v(az)J"k"[S‘]E 0 (10)

The z component of (10) yields the following wave equation
forE,:
2 E
VEZ-(I-E—Z)—Z+eZk3EZ=O (1n
&' 9EZ

where V2 is the Laplacian.

Similarly, taking the rotation of (3) and using (5) and
(9), we obtain

(V-V)H+joeV X ([§]E)=0 (12)
Using (2), we rewrite the second term of left side of (12) as
follows:

(VX ([&]E)},=e(VXE),=-jopeH, (13)

The combination of the z component of (12) and (13) yields
the following wave equation for H,:

VH, + e kK3H, =0 (14)

A. Paralle]-Plates Type Resonator
We analyze the resonant modes for the structure shown
in Fig. 1(a). Solutions of (11) and (14) are given by

E,1 = A, T (k1) cos n cos Bz (15)
H,; = A Jo(kpyir) sin nf sin Bz (16)
forregion [1] (0 = r = R) and
E,» =B, K, (K';r) cos nf cos Bz an
H,, = B, K, (K'or) sin n sin Bz (18)
for region [II] (r > R) since [g,] = [1].
In the above,
Ky =g G- B i=ald-g* (9
K7 =813 20)
B=i—2=%— i1=0, 1,2, 1)
ko= Veg o = 2% = 210 (22)
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and A,, A, B, and B, are constants determined from the
boundary conditions. Also n and ! denote the radial and axial
mode numbers, respectively, B is the axial propagation
constant, and J,(x) and K (x) are the Bessel function of the
first kind and the modified Bessel function of the second
kind, respectively. The field components except E, and H,, are
given by substitution of (15)-(18) into (2) and (3).

The continuity of the tangential components of the
electromagnetic fields between regions [I] and [II] yields the
following characteristic equation for the hybrid modes:

{8 Vo) Ka(¥) M Va(um)  K'a(¥) }
: Ue In(ue) v Kp(v) Um In(um) v Ky(v)
2
g (L + L)z 23)
@ g vz

where u, = k1R, u, = k1R, and v = k';R, the primes on J
(x) and K, |(x) refer to differentiation with respect to their
argument x. Equation (23) is different from one presented by
Tobar et al.[2].

Particularly, when n =0, (23) is divided into two for the
TEgm, and TMg,,; modes; that is,

Vo(um) K'o(v)
= 24
e Joum) ¥ Ko(¥) @9
for the TEq,,; modes and
| Yo | Ko |
=0 25
50 Joud " VKo | @)
for the TMg,,; modes. Also, when 1 = 0, (23) yields
[ J’n(ue) K,n(v) 1
=0 26
L “ Ue Jn(ue) v Kp(v) B (26)

for the leaky state TM, ;o modes|3].

B. Cavity-Open Type Resonator

The resonant modes for the structure shown in Fig. 1(b)
can be rigorously analyzed by the mode matching method in
a similar manner to the isotropic case, which has been already
analyzed successfully{4]. The detail of analysis is omitted on
account of the limited space. From the symmetry of the
structure, the resonant modes are classified into ones where
the T-plane ( 1-0 plane at z = 0 ) is an electric wall and the
others where it is a magnetic wall. Thus, we consider only the
z = 0 region, which is divided into three homogeneous
subregions [I], [1I], and [III]. The electromagnetic fields in
each subregion are expanded in eigenmodes which satisfy the
boundary conditions on the conductor surface and the T-
plane. As a result, the resonant frequencies f; are determined
from the condition that the following determinant vanishes:

det H( fo; €, €,, €, €3, D, 2L, d, 2h ) = 0 @7

where matrix elements are omitted.
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Fig. 2. Mode chart for a parallel-plates type resonator.

III. CALCULATIONS

A. Parallel-Plates Type Resonator

‘We can accurately compute the resonant frequencies for
various modes by solving the corresponding transcendental
equations (23)-(26) numerically. Fig. 2 shows a mode chart
for the parallel-plates type resonator which is computed for
the some lowest modes when g, = €, = 10 (solid curves) and
when €, = 10 and €, = 12 (broken curves). The results
calculated for the HE;;, TE(;1, TMg1y, and HE;;; modes in
the case of & = 10 and ¢, = 12 show very good agreement
with ones presented by Krupka[5] using the Galerkin-
Rayleigh-Ritz method. The left side region of the cutoff
condition in the figure indicates that the resonant modes are
in a leaky state, where a part of the energy leaks away from
the resonator in the radial direction[3]. The leaky state TM o
modes are independent of €, because they have only E,
components; thus, we can directly use the calculated values
presented in [3]. The TEy;; mode is independent of €,
because it has no E, component. The uniaxial property affects
the resonant frequencies more strongly in the order, the
TMQ]], HEle’ HElll’ and EHlll modes according to the
strength of the E, component.

B. Cavity-Open Type Resonator

The resonant frequencies of the some lowest modes for
the cavity-open type resonator were calculated from (27),
where the size of the matrix for each resonant mode was
taken so that the resonant frequency converge within 0.1
percent. The results are shown in Fig. 3 as a mode chart. The
case of €, = €, = 10 is indicated by solid curves and the case of
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g = 10 and ¢, = 12 by broken curves. It is found that the
uniaxial property of materials influences strongly on the
resonant frequencies of the resonant modes having the
predominant E, component, such as the TMg;5 and HEq;5
modes, and weakly on ones having the predominant H,
component, such as the TEy;5 and EHy 5 modes. It is well
known that the TEy;5 mode is dominant when g, = €, is over
20 for the conventional dielectric resonators[4]. On the other
hand, for sapphire resonators having relatively low

permittivity about 10, the TMg5 or EHy5 mode become
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Fig. 3. Mode chart for a cavity-open type resonator.



dominant according as the dimension ratio (D/21.)2 is smaller
or greater than 2,

IV. EXPERIMENTS

The permittivity measurements were performed for two
different samples of sapphire using the parallel-plates type
resonator. The mode chart was used to identify the resonant
modes for the different resonant frequencies. The results are
shown in Table 1. The ¢, values were determined from the

Table 1. Measured values of g, and €, for sapphires.

D L fO [GHZz]
Sample (mm] mml [ 18 A A
oin | ™onr
1 9.985 9.998 9.739 | 10.948 | 9.393 | 11.479
2 10.002 | 5.002 13.550 | 14.272 | 9.400 11.615

measured resonant frequencies for the TEg;; mode by solving
(24). Then we obtained the €, values from the measured
resonant frequencies for the TMy;; mode and the g values
using (25). The values of €, and &, measured are in agreement
within 1 percent with the published data.

To verify the validity of theory, experiments were
performed for two cavity-open type resonators constructed by
using the sapphires described above, a copper cavity having d
= 15.55 mm and 2h =13.00 mm, and foamed plastic supports
having g, = 1.031. The frequency responces of the
transmission type resonators were measured using HP
network analyzer. Two semirigid cables with small loops
were used to excite and detect both the H, and Hyg
components of the fields. The results are shown in Fig. 4. The
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Fig. 4. Measured and calculated results of resonant
frequencies for the lowest four modes (d = 15.55 mm,
2h = 13.00 mm, &, =1.031, &5 = 1).

(a) D =9.985 mm, 2L =9.998 mm, g, = 9.393, €, = 11.479
(b) D =10.002 mm, 2L = 5.002 mm, g, = 9.400, ¢, = 11.615
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calculated values of resonant frequencies (€3 = 1) are also
indicated on the top of the figures. The agreement between
theory and experiment is excellent.

V. CONCLUSIONS

The wave equations for E, and H, in a uniaxial
anisotropic dielectric medium were derived under a
cylindrical coordinate system. Based on these wave
equations, the characteristic equations for two resonator
structures were derived to calculate the resonant frequencies
of any resonant modes. The mode charts useful to identify the
resonant modes for sapphire rod resonators were presented. It
was verified that the mode matching method used commonly
for the analysis of isotropic-dielectric resonators can be
applied successfully to that of uniaxial-dielectric resonators.

REFERENCES

[1] Z. Y. Shen, C. Wilker, P. Pang, and W. Holstein, "High Tc
superconductor-sapphire microwave resonator with
extremely high Q-values up to0 90 K," 1992 IEEE MTT-S
Int. Microwave Symp. Dig., F-3, pp. 193-196.

[2] M. E. Tobar and A. G. Mann, "Resonant frequencies of
higher order modes in cylindrical anisotropic dielectric
resonators,” IEEE Trans. Microwave Theory Tech., vol.
39, pp. 2077-2082, Dec. 1991.

[3] Y. Kobayashi and S. Tanaka, "Resonant modes of a
dielectric rod resonator short-circuited at both ends by
parallel conducting plates,” IEEE Trans. Microwave
Theory Tech., vol. MTT-28, pp. 1077-1085, Oct. 1980.

[4] Y. Kobayashi, N. Fukuoka, and S. Yoshida, "Resonant
modes for a shielded dielectric rod resonator," Electronics
and Communication in Japan, vol. 64-B, no. 11, pp. 44-
51, 1981.

[5] J. Krupka, "Resonant modes in shielded cylindrical ferrite
and single-crystal dielectric resonators,” IEEE Trans.
Microwave Theory Tech., vol. 37, pp. 691-697, Apr.
1989.



