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Abstract —The rigorous field analysis by the mode

matching method is presented for two dielectric rod

resonators including such uniaxial-dielectrics as sapphire,

which is placed between two parallel conducting plates

and in a conducting cavity. The resonant frequencies of

the some lowest modes are calculated. The validity is

confirmed by experiment.

I. INTRODUCTION

Recently, sapphire dielectric resonators shielded by

high Tc superconducting films have attracted special interest

since they realize very high Q characteristic of over 2 X 106

below 90 K[ 1]. As is well known, single crystalline sapphires

have relative permittivity perpendicular to the c-axis E, = 9.4

and one parallel to the c-axis &z = 11.6 because of their

dielectric uniaxial anisotropy. Therefore, designing such

resonators, we need to take account of the influence of

anisotropic property on the resonant modes.

In this paper the rigorous field analysis by the mode

matching method is described for shielded uniaxial-dielectric

rod resonators of two types; parallel-plates and cavity-open

types. The characteristic equations for these resonators are

derived, the resonant frequencies of the some lowest modes

are calculated, and mode charts are presented to design these

resonators. The validity of theory is confirmed by

experiment.

II. ANALYSIS

Fig. 1 shows two structures to be analyzed. One is

parallel-plates type resonator shown in Fig. 1(a), where a

dielectric rod is placed between two parallel, infinitely large

conducting plates, and the other is cavity-open type resonator

shown in Fig. l(b), where a dielectric rod is placed

symmetrically in a cylindrical conducting cavity.

In the field analysis discussed below we use a

cylindrical coordinate system r, e, z. The dielectric rod is

assumed to be lossless homogeneous uniaxial anisotropic

with the c-axis parallel to the z axis, Defining et and &z as the

relative permittivity perpendicular and parallel to the c-axis,

respectively, the relative permittivity tensor [~] is given by
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Fig. 1. Structures of shielded dielectric rod resonators.

(a) Parallel-plates type (b) Cavity-open type
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The relative permeability of the dielecrnc is assumed to be

~ = 1 and the conductor is also assumed to be lossless.

In a source-free condition and a time-harmonic factor

dot, Maxwell’s equations can be written as follows:

VXE=-jco~OH (2)

VxH=j@eo[~]E (3)

V.[r.JE=O (4)

VOH=O (5)

where E and H are the electric and magnetic fields, e. and w ❑o

are the permittivity and permeability of vacuum, respectively.

Equation(4) can be rewritten as follows:

(1V.[EJE=e,V. E-et l-~!&=O

Thus, we obtain

(6)

(7)

Since the resonant modes in Fig. 1 are generally known

to be hybrid, we then derive the wave equations for EZ and

Hz
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Taking the rotation of (2) and using (3), we obtain

VX(VXE)-kOz[~]E=O (8)

where koz = c# &oLo Using the vector formula

(V. V) E= V(V. E)- VX(VXE) (9)

and (7), we obtain

(V. V)E - (1-~) V~~)+ki[%]E=tI (lo)

The z component of (10) yields the following wave equation

for EZ:

(1& 22EZ
V2EZ - l-~ —+sZk; EZ=O

&~ 2E$
(11)

where V2 is the Laplacian.

Similarly, taking the rotation of (3) and using (5) and

(9), we obtain

(V .V)H+jcoeo VX([~]E)=O (12)

Using (2), we rewrite the second term of left side of (12) as

follows:

{Vx([ql E)}. =E, (vx E). =-jovo&t H. (13)

The combination of the z component of (12) and (13) yields

the following wave equation for HZ:

V2HZ + Et k; HZ = O (14)

A. Parallel-Plates Type Resonator

We analyze the resonant modes for the structure shown

in Fig. 1(a). Solutions of(11) and (14) are given by

E,l = Ae Jn(kClr) cos n(l cos ~z

Hzl = Am Jn(k,nlr) sin nfl sin ~z

for region [1] (O S r = R) and

EZ2 = Be Kn(k’2r) cos nf3 cos ~z

HZ2 = Bm K.(k’zr) sin no sin ~z

for region [11] (r > R) since [~] = [1].

In the above,

&1=&z@p2 G1=GG-P2

k’; = ~2 - k;

~.y-in
L

; 1 = o, 1, 2,...

ko=cogm=~=~

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

and A., Am, Be, and Bm are constants determined from the

boundary conditions. Also n and 1 denote the radial and axial

mode numbers, respectively, ~ is the axial propagation

constant, and Jn(x) and Kn(x) are the Bessel function of the

first kind and the modified Bessel function of the second

kind, respectively. The field components except EZ and HZ are

given by substitution of (15)-(1 8) into (2) and (3).

The continuity of the tangential components of the

electromagnetic fields between regions [1] and [11] yields the

following characteristic equation for the hybrid modes:

[

J’n(ue) K’n(v) 1[J’n(um) + K’.(v)
E=— —

Ue Jn(ue) + V Kn(v) Um Jn(um) v Kn(v) 1

(23)

where Ue = kel R, Um = kmlR, and v = k’2R, the primes on Jn

(x) and Kn(x) refer to differentiation with respect to their

argument x. Equation (23) is different from one presented by

Tobar et al.[2].

Particularly, when n = O, (23) is divided into two for the

TEtiI and TMO~l modes; that is,

[

J’()(um)

1

K’o(v) = o

Um Jo(um) + V Ko(v)
(24)

for the TEhl modes and

[

J’o(ue)

1

+ K’O(v) = o
Ez— —

U. Jo(u.) v Ko(v)

for the TMoml modes. Also, when 1= O, (23) yields

[

J’n(ue)

1

+ K’,(v) o
Ez— —

Ue Jn(u,) v K.(v) =

(25)

(26)

for the leaky state TMnmo modes[3].

B. Cavity-Open Type Resonator

The resonant modes for the structure shown in Fig. 1(b)

can be rigorously analyzed by the mode matching method in

a similar manner to the isotropic case, which has been already

analyzed successfu11y[4]. The detail of analysis is omitted on

account of the limited space. From the symmetry of the

structure, the resonant modes are classified into ones where

the T-plane ( r-0 plane at z = O ) is an electric wall and the

others where it is a magnetic wall. Thus, we consider only the
z 2 () region, which is divided into three homogeneous

subregions [1], [H], and [111]. The electromagnetic fields in

each subregion are expanded in eigenrnodes which satisfy the

boundary conditions on the conductor surface and the T-

plane. As a result, the resonant frequencies f. are determined

from the condition that the following determinant vanishes:

det H( fo; &,, &z, &2, C3, D, 2L, d, 2h ) = O (27)

where matrix elements are omitted.
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Fig. 2. Mode chart for a parallel-plates type resonator.

III. CALCULATIONS

A. Parallel-Plates Type Resonator

We can accurately compute the resonant frequencies for

various modes by solving the corresponding transcendental

equations (23)-(26) numerically. Fig. 2 shows a mode chart

for the parallel-plates type resonator which is computed for

the some lowest modes when Et= &z= 10 (solid curves) and

when &t = 10 and &z = 12 (broken curves). The results

calculated for the HElll, TEO1l, TMO1l, and HE211 modes in

the case of et= 10 and ez= 12 show very good agreement

with ones presented by Krupka[5] using the Galerkin-

E[ = 10 and q = 12 by broken curves. It is found that the

uniaxial property of materials influences strongly on the

resonant frequencies of the resonant modes having the

predominant E, component, such as the TM015 and HE118

modes, and weakly on ones having the predominant HZ

component, such as the TE018 and EH118 modes. It is well

known that the TEol~ mode is dominant when et= &z is over

20 for the conventional dielectric resonators[4]. On the other

hand, for sapphire resonators having relatively low

permittivity about 10, the TM015 or EH118 mode become

Rayleigh-Ritz method. The left side :region of the cutoff

condition in the figure indicates that the resonant modes are

in a leaky state, where a part of the energy leaks away from

the resonator in the radial direction[3]. The leaky state TMmo

modes are independent of ECbecause they have only EZ

components; thus, we can directly use the calculated values

presented in [3]. The TEOII mode is independent of &z (

because it has no E, component. The uniaxial property affects

the resonant frequencies more strongly in the order, the

TMOII, HE211, HEIII, and EHIII modes according to the

strength of the Ez component.

2.0

1.5

‘g dli? =1 .56

Cu-
---,..

..
B. Cavity-Open Type Resonator — E, /&t. 1

The resonant frequencies of the some lowest modes for --------- &, /&l=l.2

the cavity-open type resonator were calculated from (27), O.j ,0 I I ! 1

1.5 2.0
where the size of the matrix for each resonant mode was

2.5 3.0 3.5 4.0

taken so that the resonani frequent y converge within 0.1
(D/2L)2

percent. The results are shown in Fig. 3 as a mode chart. The

case of&t = &z= 10 is indicated by solid curves and the case of
Fig. 3. Mode chart for a cavity-open type resonator.
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dominant according as the dimension ratio (D/2L)Z is smaller

or greater than 2,

IV. EXPERIMENTS

The permittivity measurements were performed for two

different samples of sapphire using the parallel-plates type

resonator. The mode chart was used to identify the resonant

modes for the different resonant frequencies. The results are

shown in Table 1. The &t values were determined from the

Tablel. Measured values of& Land&z for sapphires.

f. [GHzI

‘at’” [ml] [m:]
~oll 1%11 ‘1 ‘zt

1 9.985 9.998 9.739 10.948 9.393 11.479

2 10.002 5.002 13.550 14.272 9.400 11.615

measured resonant frequencies forthe~oll mode by solving

(24). Then we obtained the &z values from the measured

resonant frequencies for the TMO1l mode and the et values

using (25). The values of &Land &zmeasured we in agreement

within 1 percent with the published data.

To verify the validity of theory, experiments were

performed for two cavity-open type resonators constructed by

using the sapphires described above, a copper cavity having d

= 15.55 mm and 2h =13.00 mm, and foamed plastic supports

having e2 = 1.031. The frequency responces of the

transmission type resonators were measured using HP

network analyzer. Two semirigid cables with small loops

were used to excite and detect both the Hz and He

components of the fields. The results are shown in Fig. 4. The

Frequency (GHZ) Frequency (GHz)

(a) (b)

calculated values of resonant frequencies (E3 = 1) are also

indicated on the top of the figures. The agreement between

theory and experiment is excellent.

V. CONCLUSIONS

The wave equations for EZ and HZ in a uniaxial

anisotropic dielectric medium were derived under a

cylindrical coordinate system. Based on these wave

equations, the characteristic equations for two resonator

structures were derived to calculate the resonant frequencies

of any resonant modes. The mode charts useful to identify the

resonant modes for sapphire rod resonators were presented. It

was verified that the mode matching method used commonly

for the analysis of isotropic-dielectric resonators can be

applied successfully to that of uniaxial-dielecrnc resonators.
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Fig. 4. Measured and calculated results of resonant

frequencies for the lowest four modes (d= 15.55 mm,

2h= 13.00 mm, e2=l.031, es = 1).

(a) D = 9.985 mm, 2L = 9.998 mm, et = 9.393, E= = 11.479

(b) D = 10.002 mm, 2L = 5.002 mm, et = 9.400, ez = 11.615
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